LINKING CANCER REGISTRIES AND BIRTH DEFECTS REGISTRIES FOR CLUES ON GENETIC CANCER RISK
Co-authors

- Carrie Langbo
 - Michigan Biotrust for Health

- Philip Lupo
 - Baylor College of Medicine

- Michael E. Scheurer
 - Baylor College of Medicine
Objectives

- Cancer risk in children with birth defects
- Review potential for investigating etiology
- Describe data/materials available
- Provide a sampling of ongoing research
- Outline ethical considerations
Cancer Risk among Children with Birth Defects

- Presence of a birth defect is the strongest risk factor for childhood cancer
- Associations with cancer and both major and minor malformations
- Examples of established associations include:
 - Down syndrome with leukemia
 - Beckwith-Wiedemann with Wilms tumor
 - Chromosome 13q14 deletion and retinoblastoma
Data Used to Assess this Association within Michigan

- **Michigan Birth Defects Registry**
 - Established in 1992

- **Michigan Cancer Surveillance System**
 - Established in 1985

- **Selected 1992 through 2011 birth cohorts**
 - 2,566,771 Michigan births in this period
MBDR - Some Key Facts

- Established by Act 236 of 1988
- Requires Reporting by Hospitals and Cytogenetics Laboratories
- Passive Reporting
- Defined List of Reportable Conditions
- Reporting Began State Wide in 1992
Reportable Conditions

- Congenital Anomalies
 - Excludes only minor conditions
- Other Conditions that Associate
 - Immune/Metabolic Deficiencies
 - Other Abnormalities
- Infectious Disease Exposures
 - Syphilis/Rubella/CMV/etc
- Maternal Exposures
 - Alcohol/Drugs/Toxic Agents
Current Status of the Registry

- Processed 638,000 reports
- Registry Contains 308,000 Cases
- Linked to Live Birth Registry
- Linked to Mortality Files
Measuring Relative Risk

- Birth Defects
- Live Birth
- Cancer
<table>
<thead>
<tr>
<th>Defect group</th>
<th>BDs, N</th>
<th>BD-CC, N</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central nervous system (CNS)</td>
<td>10,288</td>
<td>90</td>
<td>4.3 (3.5-5.3)</td>
</tr>
<tr>
<td>Neural tube</td>
<td>1,690</td>
<td>9</td>
<td>2.6 (1.3-5.0)</td>
</tr>
<tr>
<td>Eye and ear</td>
<td>12,960</td>
<td>54</td>
<td>2.0 (1.6-2.7)</td>
</tr>
<tr>
<td>Anophthalmia/microphthalmia</td>
<td>475</td>
<td>4</td>
<td>4.1 (1.5-10.8)</td>
</tr>
<tr>
<td>Cardiac and circulatory</td>
<td>44,466</td>
<td>200</td>
<td>2.2 (1.9-2.6)</td>
</tr>
<tr>
<td>Septal</td>
<td>26,402</td>
<td>120</td>
<td>2.2 (1.9-2.7)</td>
</tr>
<tr>
<td>Other heart</td>
<td>14,812</td>
<td>79</td>
<td>2.6 (2.1-3.3)</td>
</tr>
<tr>
<td>Other circulatory</td>
<td>22,941</td>
<td>104</td>
<td>2.2 (1.8-2.7)</td>
</tr>
<tr>
<td>Left ventricular outflow tract</td>
<td>4,681</td>
<td>18</td>
<td>1.9 (1.2-3.0)</td>
</tr>
<tr>
<td>Respiratory</td>
<td>10,826</td>
<td>58</td>
<td>2.6 (2.0-3.4)</td>
</tr>
<tr>
<td>Oral clefts</td>
<td>4,370</td>
<td>10</td>
<td>1.1 (0.6-2.1)</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>14,258</td>
<td>89</td>
<td>3.1 (2.5-3.8)</td>
</tr>
<tr>
<td>Genitourinary</td>
<td>34,317</td>
<td>110</td>
<td>1.6 (1.3-1.9)</td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td>45,522</td>
<td>162</td>
<td>1.9 (1.6-2.2)</td>
</tr>
<tr>
<td>Chromosomal</td>
<td>5,718</td>
<td>91</td>
<td>7.8 (6.4-9.6)</td>
</tr>
<tr>
<td>Cancer type</td>
<td>CCs, N</td>
<td>BD-CC, N</td>
<td>RR (95% CI)</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Leukemia</td>
<td>1,182</td>
<td>273</td>
<td>3.1 (2.8-3.5)</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>346</td>
<td>61</td>
<td>2.2 (1.7-2.9)</td>
</tr>
<tr>
<td>CNS tumor</td>
<td>824</td>
<td>277</td>
<td>5.3 (4.7-6.0)</td>
</tr>
<tr>
<td>Neuroblastoma</td>
<td>349</td>
<td>154</td>
<td>8.2 (6.9-9.7)</td>
</tr>
<tr>
<td>Retinoblastoma</td>
<td>147</td>
<td>32</td>
<td>2.9 (2.0-4.2)</td>
</tr>
<tr>
<td>Rhabdomyosarcoma</td>
<td>137</td>
<td>25</td>
<td>2.3 (1.5-3.5)</td>
</tr>
<tr>
<td>Wilm’s tumor</td>
<td>233</td>
<td>58</td>
<td>3.5 (2.6-4.5)</td>
</tr>
<tr>
<td>Hepatic</td>
<td>89</td>
<td>51</td>
<td>14.0 (10.1-19.3)</td>
</tr>
<tr>
<td>Bone</td>
<td>127</td>
<td>22</td>
<td>2.2 (1.4-3.4)</td>
</tr>
<tr>
<td>Germ cell</td>
<td>126</td>
<td>47</td>
<td>6.2 (4.5-8.4)</td>
</tr>
</tbody>
</table>
Research Opportunities

- Etiology of most birth defects remains unknown
- Mechanisms that link birth defects and cancer are unknown
- Possible genetic/genomic factors in common are unknown
- Environment is ripe for exploration
Tools to enable molecular/genetic research

- Live Birth
- Newborn Screen
- Cancer
- Birth Defects
Environment

- Newborn screening in all states
 - Variations in availability to research
- Standardized live birth files in all states
 - Exceptions related to adoption of 2003 standard
- Standardized cancer registries in all states
- Birth defects registries in 42 states
 - Considerable variation in case definition/data set
- Standardized mortality data
 - Provides vital status
NBS Law MCL 333.5431

- Mandatory testing
 - Informed consent requirements not applicable
 - Violation is a misdemeanor
 - Parents can decline (Sign refusal for treatment form)

- Residual NBS DBS may be used for research during retention period
Michigan NBS Panel: 55 Disorders

www.michigan.gov/newbornscreening

- 14 Amino Acid Disorders (1965)
- 13 Fatty Acid Oxidation Disorders (2003)
- 14 Organic Acid Disorders (2005)
About 255 Michigan children diagnosed each year with nearly 5,700 diagnosed since 1965.
Michigan Newborn Screening

Hemoglobinopathies:
Sickle Cell Association of MI/CHM

Endocrine:
U of M

Metabolic:
CHM/Wayne State

Cystic Fibrosis:
U of M

Severe Combined Immunodeficiency:
CHM/Wayne State

EHB Program

MCIR

PCP's Medical Home

MDCH NBS Follow-up Program

EHDI Program

MDCH NBS Laboratory

84 Hospitals

92 Midwives

Education/Training QA Reports Monitoring

EOB

500

113,000

Negatives

Education/Training QA Reports Monitoring

MDCH NBS Follow-up Coordinating Centers

Hearing Loss:
Pediatric Audiology

Cystic Fibrosis:
U of M

Endocrine:
U of M

Metabolic:
CHM/Wayne State

Hemoglobinopathies:
Sickle Cell Association of MI/CHM

Severe Combined Immunodeficiency:
CHM/Wayne State
• Normally ~13 punches need from the 6 blood spots
• What happens to the residual sample?
• Does it matter how they are stored and used?
• Could storage and use policies impact perception of NBS?
There are now added public health benefits from newborn screening.

- Population based sample
- Over 160 biomarkers
 - Proteins
 - Human DNA/mRNA
 - Viral/bacterial DNA
 - Metals
There is potential to reduce burden of disease in children.
• MDCH
• Community Values Advisory Board - CVAB
• Scientific Advisory Board - SAB
• MDCH IRB
• MNB BOD
Strict guidelines are in place to promote appropriate research use of dried blood spots.

- 2-step approval process
- 2-step de-identification process
- Scientific Advisory Board
- MDHHS Institutional Review Board
- Research guidelines
Potential Value of these Components

- Near population-based
- Generally available in all states
- Availability to research varies widely.
- Enables research into very rare conditions
- Near perfect source for control selection
Current Research using Biotrust

- Identification of genetic causes of tetralogy of Fallot using massively parallel sequencing – Mark Russell, U Michigan
- Evaluation of the Effects of Prenatal Exposure to Non-Essential Heavy Metals on Hearing - Richard Neitzel, U Michigan
- Maternal Social Environment and Newborn Telomere Length - Belinda Needham, U Michigan
- Newborn DNA Methylation Status in Autism and Cerebral Palsy - Ray Bahado Singh, WSU
- DNA Methylation and Congenital Heart Defects – Ray Bahado Singh, WSU
- Molecular Epidemiology of Pediatric Germ Cell Tumors – Jenny Poynter, U Minnesota
Plans for additional research

- Assemble a large population-based birth cohort
- Identify novel cancer predisposition syndromes by determining associations between birth defects and childhood cancer in a registry linkage study
- Develop a family-based cohort of children affected by both birth defects and childhood cancer to determine the molecular characteristics of susceptibility among these individuals
- Interrogate the genomes of children with cancer and birth defects
Genetic Overlap Between Anomalies and Cancer in Kids Study
Available NBS Biological Material

- **Blood Spots from July 1984 through April 30, 2010**
 - De-identified, available under waiver of informed consent
 - *Prior to implementing BioTrust informed consent process*

- **May 1, 2010 through March 15, 2015**
 - De-identified, available only with parental consent
 - *BioTrust parental consent requested at delivery*

- **March 16, 2015 forward**
 - NBS Saves Lives Reauthorization Act 2014
 - Pending HHS rules
States must address:

- Security, confidentiality and privacy concerns
- Appropriate research use
- Public awareness & trust
- Ability for informed parental decision making

It is critical to preserve primary newborn screening goal of detecting children with treatable disorders.
Policies and best practices for DBS storage and use in Michigan have been re-examined and continue to evolve over time.

- 1987: Retention policy 21.5y
- 1999: Governor’s Commission recommendations
- 2000: Public health code amended
- 2008: Retention policy - indefinite storage
- 2009: Implementation of BioTrust
All NBS kits contain BioTrust parental consent form. White copy routed to state laboratory and pink given to parents.
Senate Changes (Amendment)

Section 12. Informed Consent for Newborn Screening Research

Research on newborn dried blood spots shall be considered research carried out on human subjects meeting the definition of section 46.102(f)(2) of title 45, Code of Federal Regulations, for purposes of Federally funded research.

Sections 46.116(c) and 46.116(d) of title 45, Code of Federal Regulations, shall not apply.

Shall apply only to newborn dried blood spots that were collected not earlier than 90 days after the date of enactment of this Act.
Contact Information

- **Michigan Biotrust for Health**
 - Carrie Langbo
 - LangboC@michigan.gov

- **GOBACK Study**
 - Philip Lupo
 - Philip.Lupo@bcm.edu

- **MCSP/MBDR**
 - Glenn Copeland
 - copelandg@michigan.gov