Geographic variation in thyroid cancer incidence in Ontario, Canada: 2003-2007

Elisa Candido, Loraine D. Marrett, Diane Nishri, Anna M. Sawka

Tuesday June 5, 2012
NAACCR 2012 Annual Conference: Portland, Oregon
Thyroid cancer background

• Relatively rare but most common endocrine malignancy.

• Unusual age and sex distribution:
 • ~ 3:1 female-to-male ratio.
 • Younger age at diagnosis than more common cancers.

• Significant variation in incidence rates worldwide:
 • Female rates vary ~ 5-fold.
 • High rates in certain populations (e.g., Pacific Islanders, Filipino and Middle Eastern immigrants to U.S.).
 • Higher rates in Ontario than all other Canadian provinces (Canadian Cancer Statistics, 2012).
Thyroid cancer incidence has been rising

- Thyroid cancer incidence ↑ worldwide over the past 30 years, especially in females
- Ontario: thyroid cancer ↑ more rapidly than any other cancer.
- 4th most common cancer among Ontario females

Thyroid cancer incidence, Ontario, 1983-2007, by sex

- Male observed: [Graph]
- Female observed: [Graph]
- Male regression: [Graph]
- Female regression: [Graph]

Source: Cancer Care Ontario (Ontario Cancer Registry, 2010)
APC = Annual Percentage Change
What could explain rising rates of thyroid cancer?

1. ↑ detection of thyroid cancer (incidentalomas and small subclinical tumours) resulting from:
 - ↑ use of diagnostic imaging technologies (e.g., Dx ultrasound, fine-needle aspiration biopsy) since mid-1980s

Ontario:
- **1990-2001**: Incidence of small tumours (≤2cm)↑, medium sized tumours ↔ (Kent WDT, et al., CMAJ 2007;177(11):1357-61)
- **1993-2006**: Rate of neck imaging tests (CT, MRI, US) associated with thyroid cancer rate (Hall SF, et al., World J Surg 2009)
What could explain rising rates of thyroid cancer?

2. Changes in exposure to known or emerging risk factors:
 • Ionizing radiation**
 • History of goitre/ or thyroid nodules
 • Hormonal/reproductive factors?
 • Dietary factors/ obesity?
 • Emerging environmental factors?

Ontario:
• Little data on risk factor prevalence over time and across regions available BUT examining demographic factors may give us a clue
Objectives

• To examine geographic variation in female thyroid cancer incidence in Ontario

• To explore the relationship between regional rates of thyroid cancer with:
 a. diagnostic imaging service availability; and
 b. socio-demographic factors (immigration, education, income)

Note: Ontario has a publicly funded health care system, which covers fees for diagnostic imaging services
Methods – Data sources

- **Ontario Cancer Registry**
 - New female thyroid cancer cases (ICD-O-3: C73.9)
 - 2003-2007, N= 7,179

- **Ontario Health Insurance Plan physician billings claims**
 - Dx imaging use: head/neck ultrasound; thyroid fine-needle aspiration biopsy (FNAB), females
 - 2003-2007

- **Canadian Census data**
 - Socio-demographic characteristics: immigration, education, income
 - 2006, census division level
Methods – Data analysis

- **Geographic units:**
 - **Local Health Integration Network (LHIN):** Areas of local health services delivery, N=14
 - **Census Divisions (CD):** Statistics Canada geographic unit, most equivalent to U.S. “county”, N=48

ASIR for thyroid cancer, 2003-2007 (1991 Canadian standard) by:

<table>
<thead>
<tr>
<th>LHIN</th>
<th>Census Division</th>
</tr>
</thead>
</table>

- **2003-2007 average rate:**
 - Ultrasound head/neck
 - FNAB of thyroid

- **2006 Census characteristics:**
 - % immigrant
 - Median household income
 - % University degree or higher

- Spearman rank correlation
Results - Female thyroid cancer incidence, Ontario, 2003-2007, by Local Health Integration Network (LHIN)
Results - Female thyroid cancer incidence, Ontario, 2003-2007, by census division (CD)

Statistical significance
++ Higher than Ontario
* Lower than Ontario

Rate per 100,000 (Quintiles)
Ontario = 21.25
- 5.73 - 10.31
- 10.32 - 13.52
- 13.53 - 16.52
- 16.53 - 20.49
- 20.50 - 35.75
Insuff. data

Moran's I: 0.46, p<0.001
The geographic pattern of incidence rates by Census Division is significantly clustered.

GTA

Notes:
*ICD-O-3 C73.9 (Thyroid).
†Rates are per 100,000 and age-standardized to the 1991 Canadian population.
‡Excluding unknown CD (N=147).

Report date: May 2012, Data source: Cancer Care Ontario (Ontario Cancer Registry, 2011)
Prepared by: Cancer Care Ontario, Prevention and Cancer Control (Surveillance and Research)
Why are female thyroid cancer rates so high in the Greater Toronto Area (GTA)?

The GTA is unique:

- ~ 46% of Ontario’s population
- Ethnically diverse: nearly 50% of the population are immigrants
- Ontario’s largest teaching hospitals and academic centres
- Almost 50% of Ontario’s active endocrinologists

Does greater access to health services contribute to the high rates in the GTA?
Results – Relationship between rate of head/neck ultrasound procedures and thyroid cancer incidence in Ontario females, 2003-2007, by LHIN

$r=0.938, p<0.001$

Source: Ontario Health Insurance Plan (OHIP); Cancer Care Ontario (Ontario Cancer Registry, 2010)
Results – Relationship between rate of FNAB procedures of the thyroid and thyroid cancer incidence in Ontario females, 2003-2007, by LHIN

Source: Ontario Health Insurance Plan (OHIP); Cancer Care Ontario (Ontario Cancer Registry, 2010)
Results – Relationship between selected socio-demographic factors and thyroid cancer incidence in Ontario females, 2003-2007, by CD

<table>
<thead>
<tr>
<th>Socio-demographic characteristic</th>
<th>All Census Divisions</th>
<th>Census Divisions outside of GTA*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Correlation</td>
<td>P-value</td>
</tr>
<tr>
<td>% Immigrant population</td>
<td>0.507</td>
<td><0.001</td>
</tr>
<tr>
<td>Median household income ($)</td>
<td>0.346</td>
<td>0.018</td>
</tr>
<tr>
<td>% University degree or higher</td>
<td>0.315</td>
<td>0.033</td>
</tr>
</tbody>
</table>

* Excludes: Durham, York, Toronto, Peel, Halton
Limitations

• Exploratory analysis: potential factors examined separately but are likely related and interact with each other.

• Unable to readily access automated info on important tumour characteristics (e.g., size, disease stage).

• Lack of risk factor exposure data (e.g., radiation, history of thyroid disease).

• Lack of info on ethnicity/immigration for individual cases.
Conclusions

• Substantial geographic variation of female thyroid cancer incidence exists across Ontario; likely due to differences in:
 • Detection
 • Population demographics

• Findings support the hypothesis that both groups of factors are driving thyroid cancer incidence in Ontario.

• Future research needed to examine the role of risk factor exposure and combined effect of multiple factors.
Acknowledgements

Todd Norwood, Manager, Geospatial analysis, Prevention and Cancer Control, Cancer Care Ontario
References

Questions?