Trends in primary central nervous system lymphoma incidence and survival in the U.S.

Meredith Shiels, Ph.D.
Division of Cancer Epidemiology and Genetics
June 16, 2016
Primary central nervous system (CNS) lymphoma

- Incidence rate: 7 per million in the U.S.
- Risk increases strongly with immune suppression
 - HIV-infected people: 50-fold increased risk
 - Solid organ transplant recipients: 15-fold increased risk
- Etiology may differ by immune status
 - Most immunocompromised cases are Epstein-Barr virus positive
 - Some suggest that rates of immunocompetent PCNSL are increasing

O’Neill et al., 2013; Gibson et al., 2014; Engels, unpublished data; Chimienti et al., 2009
HIV and PCNSL

- Highly active antiretroviral therapy (HAART) was introduced to treat HIV in 1996
 - PCNSL rates decreased by 60% in the post-HAART era
- Impact of HIV epidemic apparent at the population level
Population-level trends consist of immunocompetent and immunocompromised cases

- National PCNSL trends are highly contaminated by HIV-infected cases (1/4 of cases during 1980-2007).

Shiels et al., JAMA 2011
Approaches used to exclude HIV-infected PCNSL cases

- Excluding populations with higher HIV prevalence
 - San Francisco area residents
 - Never married
 - <65 year-olds
- Exclude deaths due to HIV and other infectious diseases
- Approaches incompletely remove HIV-infected cases and do not address cases among transplant recipients

O’Neill et al., 2013; Olson et al., 2002; Norden et al., 2011
Study Aims

1. To quantify the fraction of PCNSL that occurred among people who are HIV-infected or transplant recipients
2. To estimate trends in immunocompetent PCNSL over time
3. To compare survival after PCNSL diagnosis among HIV-infected and HIV-uninfected cases
Data sources

- General population rates: 10 SEER registries, 1992-2011
 - CNS lymphoma defined based on SEER site recode (NHL) and topography codes C70.0-C72.9.
- HIV-infected cases: classified as HIV-infected if
 - Positive indicator of HIV status recorded at the time of diagnosis (i.e., “HIV flag”). Unknown values were classified as HIV-negative; or
 - HIV recorded as the cause of death (4.5% of unknown/negative HIV flag).
Estimation of PCNSL in transplant recipients

- Transplant-associated cases:
 - Estimated with data from the Transplant Cancer Match Study
 - Record linkage study of the Scientific Registry of Transplant Recipients (SRTR) and cancer registries
 - Calculated IR for transplant-related CNS lymphoma in the TCM Study in strata defined by calendar year, race/ethnicity, sex and age.

 \[
 \frac{\text{# of CNS lymphoma cases linked to SRTR}}{\text{Person-years in cancer registries in TCM}}
 \]

- Applied stratum-specific IRs to person-years in SEER -> number of CNS lymphoma cases expected to have occurred among transplant recipients.

- Immunocompetent cases=total-(HIV-infected+transplant)
Characteristics of CNS lymphoma cases in 10 SEER registries, 1992-2011

- 64% B-cell, 1.0% T-cell, 4.8% NHL, unknown lineage and 30.1% NHL, NOS.
- 83.3% occurred in the brain

<table>
<thead>
<tr>
<th></th>
<th>Immunocompetent</th>
<th>HIV-infected</th>
<th>Transplant recipient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (%)</td>
<td>N (%)</td>
<td>N (%)</td>
</tr>
<tr>
<td>Total</td>
<td>2608</td>
<td>1512</td>
<td>38</td>
</tr>
<tr>
<td>Median age, IQR*</td>
<td>67 (52, 77)</td>
<td>37 (32, 42)</td>
<td>52 (42, 62)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1318 (50.5)</td>
<td>1388 (91.7)</td>
<td>22 (57.9)</td>
</tr>
<tr>
<td>Female</td>
<td>1290 (49.5)</td>
<td>124 (8.2)</td>
<td>16 (42.1)</td>
</tr>
<tr>
<td>Race/ethnicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic white</td>
<td>1798 (69.0)</td>
<td>778 (51.5)</td>
<td>19 (50.0)</td>
</tr>
<tr>
<td>Other</td>
<td>810 (31.1)</td>
<td>734 (48.5)</td>
<td>19 (50.0)</td>
</tr>
</tbody>
</table>

Shiels et al., Br J Haem 2016
Proportion of total PCNSL cases in HIV+ and transplant populations

<table>
<thead>
<tr>
<th></th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIV+</td>
</tr>
<tr>
<td>Males and Females</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>36.4</td>
</tr>
<tr>
<td>Males</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>50.9</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
</tr>
<tr>
<td>0–19</td>
<td>4.5</td>
</tr>
<tr>
<td>20–39</td>
<td>88.5</td>
</tr>
<tr>
<td>40–64</td>
<td>50.6</td>
</tr>
<tr>
<td>65+</td>
<td>1.8</td>
</tr>
<tr>
<td>Race/ethnicity</td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic white</td>
<td>44.8</td>
</tr>
<tr>
<td>Non-Hispanic black</td>
<td>84.6</td>
</tr>
<tr>
<td>Hispanic</td>
<td>63.1</td>
</tr>
<tr>
<td>Females</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>8.7</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
</tr>
<tr>
<td>0–19</td>
<td>5.0</td>
</tr>
<tr>
<td>20–39</td>
<td>54.5</td>
</tr>
<tr>
<td>40–64</td>
<td>8.8</td>
</tr>
<tr>
<td>65+</td>
<td>0.7</td>
</tr>
<tr>
<td>Race/ethnicity</td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic white</td>
<td>3.3</td>
</tr>
<tr>
<td>Non-Hispanic black</td>
<td>44.8</td>
</tr>
<tr>
<td>Hispanic</td>
<td>12.6</td>
</tr>
</tbody>
</table>

Shiels et al., Br J Haem 2016
Proportion of total PCNSL cases in HIV+ populations

![Bar chart showing HIV prevalence in PCNSL cases for men and women from 1992-1996 to 2007-2011.](chart.png)

- **1992-1996**
 - Men: 70
 - Women: 10

- **1997-2001**
 - Men: 40
 - Women: 10

- **2002-2006**
 - Men: 20
 - Women: 5

- **2007-2011**
 - Men: 10
 - Women: 5

Shiels et al., Br J Haem 2016
Age-standardized trends in total and immunocompetent PCNSL

Shiels et al., Br J Haem 2016
Age-standardized trends in total and immunocompetent PCNSL

Incidence rate per 100,000

Men

Women

APC=0.7

APC=0.9

Shiels et al., Br J Haem 2016
Age-standardized trends in total and immunocompetent CNS lymphoma

Men

Incidence rate per 100,000

20-39 years

40-64 years

65+ years

Women

Incidence rate per 100,000

20-39 years

40-64 years

65+ years

APC=-1.2

APC=-0.5

APC=1.7*

APC=N/A

APC=-0.1

APC=1.6*

Shiels et al., Br J Haem 2016
Survival after diagnosis in HIV+ and HIV- cases

1992-2011

- Proportion Alive
- Months after CNS Lymphoma Diagnosis
- 5-year survival
 - HIV+: 8.3%
 - HIV-: 26.2%

1998-2011

- Proportion Alive
- Months after CNS Lymphoma Diagnosis
- 5-year survival
 - HIV+: 14.1%
 - HIV-: 28.9%

Shiels et al., Br J Haem 2016
Changes in 5-year survival in HIV-uninfected cases

- Slight increases in 5-year survival from 20.2% in 1992-1996 to 29.2% in 2002-2006

Shiels et al., Br J Haem 2016
Study Strengths

- SEER population-based data
- Estimates of transplant-associated cases
- Direct assessment of HIV status through HIV flag
Revisiting approaches used by other studies

- Exclusion of higher HIV prevalence populations in SEER
 - San Francisco registry (HIV prevalence in remaining cases: 33%)
 - Never married men and women (13.1%)
 - People aged <65 years old (1.2%)
- Exclusion of people who died from HIV and other infectious and parasitic diseases (8.0%)

Limitations

- Counts of people living with HIV in SEER areas were not available for all years from CDC
 - Denominators of immunocompetent incidence rates included HIV+ people and transplant recipients
 - Rates are slight underestimates
- HIV flag is incomplete (~50%) and has imperfect sensitivity
- We were unable to remove transplant recipients from survival estimates
 - With only 38 expected cases, transplant recipients were unlikely to have influenced survival estimates
- “Immunocompetent” cases include people with other immune conditions
Conclusions

- Rates of CNS lymphoma increased during 1992-2011 among immunocompetent 65+ year-old men and women
 - Does not reflect trends in overall NHL (rates plateaued in 2004).
 - May reflect improved imaging for diagnosis
 - However, glioma rates have remained stable over the same time period
 - May be due to increased immunosuppressive therapies for autoimmune disease among older people
- Despite recent small improvements, survival among both HIV-infected and HIV-uninfected PCNSL cases remain poor.

Olson, Cancer 2002; Shiels, CEBP 2013
Collaborators

- National Cancer Institute
 - Dr. Eric Engels
 - Dr. Ruth Pfeiffer
 - Dr. Lindsay Morton
 - Dr. Elizabeth Yanik

- Cancer registries
 - Dr. Christina Clarke
 - Dr. Leticia Nogueira
 - Dr. Karen Pawlish

- Bicêtre University Hospital
 - Dr. Caroline Besson

- University of Utah
 - Dr. Gita Suneja

- Funded by the Intramural Program of the National Cancer Institute